AP]

The Fortune-Teller APl is at the core of all Fortune-Teller functionality. While the App provides a
means to guide users through the functionality and provide an attractive User Interface, the API
should be doing the work. Deeper logic should be limited to the API. The API is hosted as a GitHub
Project and based on Ruby on Rails. It can be installed separately and the architecture considers
key settings to be saved in files rather than database entries. However, the API is also deployed on
a server under api.fortune-teller.me. Within the API there are two major parts: the public part with
no intention of saving requests or calculations and the registered part.

e APl Concepts

e Public API

e Registered API

e J[SON-Calculation Scheme



APl Concepts

General Scope and Goals

Following the general goals as published on the Project Website, the API intends to provide easy
access to calculations and information relevant for personal finance and financial planning of
individuals. Any extension of the app with further modules / functionalities is welcome - as long as
the core principles: Non-Commercial, Independence, Ease of Use, Privacy are maintained. Go to

GitHub for the project site.

The public part of the API covers basic functionalities that can be queried without a UID
(registration string) and that (besides server logs) do not save data.

The registered part of the APl is set up in a way to avoid obtaining personal data to the highest
degree possible. Fortune-Teller does not intend to monetize data or proactively contact users, but
in order to provide a better user experience, value flows and entries are saved in this working
mode.

International Scope: At the time of intiation, the API provides some generic functionalisties and
specific functionalities for the legal setup in Germany as of 2021. The architecture considers
internationalization / country localization.

Outlook on Functionality

e Public API
o Generic
o Inflation on named line items
o Interest-Calculator
o Valueflows for Financial items over time (interest, fees, tax)
o DE-specific
o Income Tax Tariff
o Pension-Calculator (DRV)
o Social Insurance rates
e Registered API (Generic functions with localization for certain items)
UID management (UID, Pin, token management, key calculation information)
Spending at given timeframe (named and sorted line items)
Assets at given timeframe
Debt & Valueflows
Savings Valueflows
Summary Cashflow

o

o

o

o

o

o


https://www.fortune-teller.me
https://github.com/HFT-turnet/fortune-teller-api

Public API



Registered API



|]SON-Calculation Scheme

This concept is used in a number of calculation formats in the Fortune-Teller API.

Generally speaking, a JSON-File, that is committed in the GIT project contains a calculation
structure, that is to be applied on a base value. The structure provided in the JSON-File provides
the raw-data for the calculation scheme, so that it is highly adjustable, without impacting the APIs
code.

API calculation engine

The scheme calculator is called with Localization (i.e. DE), with the calculation type, a base value
and a number of variables. The input items are checked, the versions are identified and errors /
alternatives raised if not available. As a result the calculation is performed and a number of
labelled items and the values are given back, along with messages raised, disclaimer and sources.

Step Elements Possible Values Example

type Absolute if range is met, this value or
the referenced labelvalue is added
Percent a percentage is applied on an
amount in the range
StepPercent a percentage is applied
for each part of the range that is
below the base value
Add if range is met, the label value is
added
Multiply if range is met, the label
value is added

base label id any label available as input or
in the calculation

from, to Decimal value lower and upper range
of applicable base value. Range
includes these values.

part Decimal value of 1 or below applied
on the range of the base amount
(only percent or absolute amount)

label label id result is cumulatively saved
under this label

var Decimal value i.e. an amount or a
decimal below 1 for a rate to be
applied.



labelvar label id any label available as input or

in the calculation

Core Elements of the JSON file (in folder jsonlib)

o Uk W

. The name of the file is defined in the respective module, but begins with the Country Code

(2-Letter)

The Json begins with a context depending on the scope of the settings included, any
number of generic items can be listed.

The Input section declares expected input variables and whether these are obligatory
The actual type of calculations is named and provides a collection of versions

Each version includes a collection of steps, that will be followed consecutively

Each calculation scheme ends with a Disclaimer and Source tag, this must contain any
limitations to the accuracy of the calculation and the source of the information included in
the scheme.

Example for a file (not making a lot of sense)

"country":"Deutschland",
"commentl": "Order versions from recent to old, followed by Disclaimer",

"input":

0{o

o

1"label":"basevalue",

"obligatory":"no"

[,

[

I1"label":"prepayment",

"obligatory":"yes"

[l

D}i
"income":

0o

11'2021": [

(1Tl

(11"2020": [

OTITH
IIIT"type":"absolute",

"base":"value",



(III11"from":"0",
I111"to":"1200",

"part":"1",
1111 "label":"gez",
(II11"var":"120"

(1T}
[TITH
[III1]"type":"percent”,

"base":"value",
(I from":"0",
(IIII1]'to":"1200",

"part":"1",
IIII1"label":"est",
MIIII'var":"0.12"

(11}
OTITH
(ITI11"type":"percent",

"base":"est",
(IIII1"from":"0",
(IT1111"to":"999999999",

"part":"1",
[TII11"label":"soli",
(MIII1"var":"0.05"
nnnnnk
(1Tl
[II'Disclaimer":"Dieser Text erklart Besonderheiten",

"Source":"EStG, Dejure.org 31.7.2021"
ik
}



